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Cascade-based attacks on complex networks
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We live in a modern world supported by large, complex networfkxamples range from financial markets
to communication and transportation systems. In manystiaBituations the flow of physical quantities in the
network, as characterized by the loads on nodes, is impgoktgamshow that for such networks where loads can
redistribute among the nodes, intentional attacks canteadascade of overload failures, which can in turn
cause the entire or a substantial part of the network tomedia This is relevant for real-world networks that
possess a highly heterogeneous distributioiwads, such as the Internet and power grids. We demonstrate that
the heterogeneity of these networks makes them partigutatherable to attacks in that a large-scale cascade
may be triggered by disablingsingle key node. This brings obvious concerns on the security df systems.

PACS numbers: 89.20.Hh, 89.75.-k, 05.10.-a

Complex networks are an essential part of a modern sockince its very beginning [20]. In this Rapid Communication,
ety [1,12]. It has been shown that many networks, such as there introduce a model for cascading failure in complex net-
world-wide web (WWW), the Internet, and electrical power works and show that it is applicable to realistic networkshsu
grids, present a surprisingly small average distance ketwe as the Internet and power grids.
nodes and a highly organized distribution of links per node For a given network, suppose that at each time step one unit
[3,14,l5]. Generally, the average distance will not be aéidct of the relevant quantity, which can be information, energy,
by the removal of a random subset of nodes, but it will in-etc., is exchanged between every pair of nodes and traesimitt
crease significantly if the removed nodes are among the mosiong the shortest path connecting them. The load at a node
connected ones§l[3] (see also Refs.1 6.7, 8]). The existeihce @ then the total number of shortest paths passing through th
a giant connected component in the network, however, doesode [21| 22, 23]. The capacity of a node is the maximum load
not depend on the presence of highly connected nodes. Fthat the node can handle. In man-made networks, the capacity
instance, the WWW has homepages with many thousands d@g severely limited by cost. Thus, it is natural to assume tha
hyperlinks and can remain well connected after the remdval othe capacityC; of nodej is proportional to its initial load.;,
all homepages with five or more hyperlinks [9]. In addition,
the giant component itself is typicallysaall-world network
[10] even after the removal of all highly connected nofe$.[11 C;=0+a)L;, j=12,..N, 1)
These pioneering studies on network security address ynainl :
static propertiesi.e., the effect of different network architec- yvhere. thg constant > 0 is thetolerance parameter, andv
tures. They suggest that the network connectivity, and dendS the initial number of nodes. When all the nodes are on, the

its functionability, is robust against random failure ofdes network operates in a free-flow state msofaroag_o. .BU'F'
[3,16,[7] and to some extent is even robust against interitiona{he removal of nodes in general changes the distribution of

attacks [0/ 11]. Here we show that for many physical net_shortest paths. The load at a particular node can then change

works. the removal of nodes can have a much more devaéf-it increases and becomes larger than the capacity, thre-cor
tating consequence when the intrinsignamics of flows of sponding node fails. Any failure leads to a new redistritnuti

physical quantities in the network is taken into accounta In of loads and, as a res_ult, subsequent faﬂgres can occus. Thi
power transmission grid, for instance, each node (power steotcP-PYy-Step process is what we catiaacading failure, or a

tion) deals with a load of power. The removal of nodes, eithe£aSc@de. It can stop after a few steps but it can also prapagat
by random breakdown or intentional attacks, changes the b nd shutdown a considerable fraction of the whole network

ance of flows and leads to a global redistribution of loads ove 24]?.1 A flunbdfilmentaquueitior: Is: ;mder what conditions can
all the network. This can trigger a cascade of overload fajl-SUCh @ global cascade take place:
ures [12[13], as the one that happened on August 10, 1996 in Here we focus on cascades triggered by the removal of a

the western United States power grid [14, 15]. Another exam-Slngle node. If a node has a relatively small load, its re-

ple is the Internel[16, 17, 18], where the load represemts th™0Val Will not cause major changes in the balance of loads,
amount of information a node (router) is requested to trainsm and subsequent overload fallure.s are u_nllkely to occeur. How
per unit of time, and overloads correspond to congestich [19 ever, when the load at the node is relatively large, its reahov

Internet collapses caused by congestion have been report likely to affect significantly loads at_other hodes and-pos
sibly starts a sequence of overload failures. Our resuttds t

following: global cascades occur if (1) the network extsbit
a highly heterogeneous distribution of loads; (2) the reedov
node is among those with higher load. Otherwise, cascades
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are not expected. The distribution of loads is in turn highly
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correlated with the distribution of links: networks withthe
erogeneous distribution of links are expected to be hetero-
geneous with respect to load so that on average, nodes with
larger number of links will have higher load [22]. This re-
sult confirms the robust-yet-fragile property of heteragmrs
networks, which was first observed in Refl [3] for the attack
on several nodes. The cascade effect is important, however,
because a large damage can be caused in this case by the at-
tack on asingle node. While a network with more links can
be more resistant against cascading failures, in pradtiee t
number of links is limited by cost.

Now we provide evidence for our result. We study cascades 00 02 0a 06 08 10
triggered by random breakdown and by intentional attacks. T a
simulate the former, we choose a trigger at random among all
the nodes of the network, as can occur in networks such d9G. 1: Cascading failure in scale-free networks, as trigdey
power gridsi[14]. In the case of attack the targeted node-is séhe removal of a single node chosen at random (squares), @mgm
lected from those with highest loads or largesirees (num- thpse with largest degrees (asterigks) or highest I_oaﬂ:te(s), where
ber of links at a node). We consider heterogeneous networkd is the tolerance parameter a6dis the relative size of the largest

with algebraic (scale-free) distributidn of links, as observed connected component. Each curve corresponds to the avevage
in real systems (2] 5. b5, 126] 5 triggers and 10 realizations of the network. The error bepse-

sent the standard deviation. The networks are generatending

to the algebraic distributiolill2). For the computationsvaiave set

v = 3 and5000 < N < 5100. The average degree in the largest
component igk) ~ 2.0.

P(k) ~ k77, (2)

wherek denotes the degree andthe scaling exponent, and
compare them with an equivalent homogeneous configuration.
These networks are generated according to the procedure in

Refs. [27, 28], where the nodes are connected randomly fohe same average degree (actually larger, which strengthen
a given degree distribution, and self- and repeated links arg,, conclusions). The homogeneous network does not expe-
forbidden. The damage caused by a cascade is quantified junce cascading failures due either to random breakdown or
terms of the relative siz& of the largest connected compo- (4 jntentional attacks far as small a8.05. For the heteroge-
nent, neous (scale-free) network, for the same value,afascades
G=N'/N 3) triggered by the attack on a key node can red_uge the_ largest
- ’ connected component to less theils of the original size,
as shown in the inset. Therefore, homogeneous networks ap-
pear to be more robust against attacks than the heterogeneou
ones. This conclusion does not rely on the particularitfes o

whereN and N’ are the numbers of nodes in the largest com
ponent before and after the cascade, respectively.

Figureld shows the relative sizéof the largest component
after cascading, as a function of the tolerance parameter
for a scale-free network. We can see that on avefage-
mains close to unity in the case of random breakdowns but it
is significantly reduced under intentional attacks, evemfo
unrealistically large. Indeed, the size of the largest congmt
is reduced by more tha20% for o = 1, i.e., for a capacity
as large as two times the capacity required for the system to 0.6
operate when all the nodes function normally. This result is G
in agreement with intuition, because in the case of random 0.4
breakdown the trigger is probably one of the many nodes with
small load, while in the case of intentional attack it is a@od 0.2+
with very large load. The damage is larger for smaller val-
ues ofq, as it is for load-based attacks when compared with 00 ‘ ‘ ‘ ‘ ‘
degree-based attacks. For instance, in the load-baset atta 0.0 0.2 0.4 a 0.6 0.8 10
for o = 0.2, more thar60% of the nodes are affected. For the
5000-node networks used in our simulations, it means that g, . Cascading failure in homogeneous networks. All sate

cascade triggered by the attack on a single node shuts dov; 15 have the same degree= 3 and N' = 5000. In the inset, the

and disconnects more than 3000 others! networks are generated according to the algebraic disisin@) for
Figure[2 shows the corresponding results for a homogeg > 2, v = 3, and N = 5000. The resulting average degree is

neous network with the same number of nodes and exactlyk) ~ 3.1. The legends and other parameters are the same as in Fig.

3 links per node. To make a meaningful comparison we disfl

play in the inset results for an algebraic network with about
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these models, as the same was also observed for classes of L0’

networks with exponential and Poisson-like distributiarfis

degreesd.g., the Erdos-Rényi model [29]): their homogene- 0.8l

ity makes them relatively resistant to cascades triggeyed b

attacks. The networks corresponding to the inset of[Bige2 ar G

generated according to the same scaling distribution afetho 0.6y

in Fig.[, except that in this case the minimal number of links

at a node is set to be 2. Therefore, this inset shows that the 0.4k

fragility of scale-free networks is due to their heteroggne

and does not rely on the presence of nodes with degree one,

which are easily disconnectable. Naturally, the increéiieeo 0-2

average degree reduces the damage of the cascade, as can be 00 02 04 06 08 10
seen from a comparison between Hifj. 1 and the inset of Fig. a

2

Many real-world networks are heterogeneous and as sudfG. 4: Cascading failure in the Western U.S. power transiois
are expected to undergo large-scale cascades if some vit@id [31], which hasN = 4941 and (k) ~ 2.67. The average is
nodes are attacked, but rarely in the case of random breaRbtained via 5 triggers for attacks and 50 for random breakdo
down. As an example we consider the Internet at autonomoud' legends are the same as in Eg. 1.
system levell[30], which displays an algebraic distribotid
links [3]. The damage caused by triggers of higher load or de-
gree is much larger than that by random breakdown, as shown
in Fig. @. The cascading failures are rarely triggered by ran
dom breakdown fotx > 0.05, but more tharr0% of the nodes
can be disconnected with the intentional attack on only onavhen the network is highly tolerant.g., o = 1).
node fora < 0.4. We have also considered the electrical
power grid of the western United Statesi[31]. The degree dis- Our result is thus that real networks are naturally evolved
tribution in this network is consistent with an exponern#]  to be quite resistant to random failure of nodes, but the-pres
and is thus relatively homogeneous. The distribution ofif9a ence of a few nodes with exceptionalbrge load, which is
however, is more skewed than that displayed by semirandonown to be ubiquitous in natural and man-made networks,
networks [277| 28] with the same distribution of links, ingie  has a disturbing side effect: the attack on a single importan
ing that the power grid has structures that are not captured hode (one of those with high load) may trigger a cascade of
these models. As a result, global cascades can be trigggred bverload failures capable of disabling the network almaost e
load-based intentional attacks but not by random or degreeirely. Such an event has dramatic consequences on the net-
based removal of nodes, as shown in Fig. 4. We see thatork performance, because the functionability of a network
the attack on a single node with large load reduces the largegelies on the ability of the nodes to communicate efficiently
connected componentto less than a half of its initial sivene  with each other. What is the use, say, of having a phone if you

cannot call anybody?

We conclude with some thoughts on the meaning of our re-
sults for security. An effective attack relies on identifgivul-
nerabilities and is far from being random. Our society is-geo
graphically distributed in a way that natural hazards arady
means random [33]. An example is the crowding of people,
communication, transportation, and financial centers radou
seismic areas, like the Pacific Rim. Natural disasters and in
tentional attacks can then have devastating consequences o
the complex networks underlying the society. These conse-
guences will be more severe if the damage on one or few
nodes is capable of spreading over the entire network. In

00 01 0z 03 04 05 this sense a cascade-based attack can be much more destruc-
tive than any other strategies of attack previously comsitdle
] . Lo [3,17,8,(9, 28] 34, 35, 36].
FIG. 3: Cascading failure in the Internet at autonomousesydevel

[30]. The network hasV = 6474 nodes andk) ~ 3.88 links

per node, on average. Each curve corresponds to the averagé o The authors thank Réka Albert and Duncan J. Watts for
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